# 334. Increasing Triplet Subsequence - LeetCode Python/Java/C++/JS/C#/Go/Ruby Solutions Visit original link: [334. Increasing Triplet Subsequence - LeetCode Python/Java/C++/JS/C#/Go/Ruby Solutions](https://leetcode.blog/en/leetcode/334-increasing-triplet-subsequence) for a better experience! LeetCode link: [334. Increasing Triplet Subsequence](https://leetcode.com/problems/increasing-triplet-subsequence), difficulty: **Medium**. ## LeetCode description of "334. Increasing Triplet Subsequence" Given an integer array `nums`, return `true` if there exists a triple of indices `(i, j, k)` such that `i < j < k` and `nums[i] < nums[j] < nums[k]`. If no such indices exists, return `false`. ### [Example 1] **Input**: `nums = [1,2,3,4,5]` **Output**: `true` **Explanation**: `Any triplet where i < j < k is valid.` ### [Example 2] **Input**: `nums = [5,4,3,2,1]` **Output**: `false` **Explanation**: `No triplet exists.` ### [Example 3] **Input**: `nums = [2,1,5,0,4,6]` **Output**: `true` **Explanation**:
The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
### [Constraints] - `1 <= nums.length <= 5 * 10^5` - `-2^31 <= nums[i] <= 2^31 - 1` **Follow up**: Could you implement a solution that runs in `O(n)` time complexity and `O(1)` space complexity? ## Intuition To find an increasing triplet subsequence, we can track the smallest and second-smallest elements seen so far. If we encounter an element larger than both, we've found our triplet. ## Pattern of "Greedy Algorithm" The `Greedy Algorithm` is a strategy that makes the locally optimal choice at each step with the hope of leading to a "globally optimal" solution. In other words, "local optima" can result in "global optima." ## Step by Step Solutions 1. Initialize `first` as the first element and `second` as infinity. 2. Iterate through the array starting from the second element: - If current element > `second`, triplet found → return `true`. - If current element > `first`, update `second` to current element. - Else, update `first` to current element (keeping it the smallest seen so far). 3. If loop completes without finding a triplet, return `false`. ## Complexity - Time complexity: `O(N)`. - Space complexity: `O(1)`. ## Python ```python class Solution: def increasingTriplet(self, nums: List[int]) -> bool: first = nums[0] second = float('inf') for i in range(1, len(nums)): if nums[i] > second: return True if nums[i] > first: second = nums[i] else: first = nums[i] return False ``` ## Java ```java class Solution { public boolean increasingTriplet(int[] nums) { int first = nums[0]; int second = Integer.MAX_VALUE; for (int i = 1; i < nums.length; i++) { if (nums[i] > second) { return true; } if (nums[i] > first) { second = nums[i]; } else { first = nums[i]; } } return false; } } ``` ## C++ ```cpp class Solution { public: bool increasingTriplet(vector